Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 669: 383-392, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718591

RESUMO

Phase junctions exhibit great potential in photocatalytic energy conversion, yet the narrow light response region and inefficient charge transfer limit their photocatalytic performance. Herein, an anatase/rutile phase junction modified by plasmonic TiN and oxygen vacancies (TiN/(A-R-TiO2-Ov)) is prepared through an in-situ thermal transformation from TiN for efficient photothermal-assisted photocatalytic hydrogen production for the first time. The content of TiN, oxygen vacancies, and phase components in TiN/(A-R-TiO2-Ov) hybrids can be well-adjusted by tuning the heating time. The as-prepared photocatalysts display a large specific area and wide light absorption due to the synergistic effect of plasmonic excitation, oxygen vacancies, and bandgap excitations. Meanwhile, the multi-interfaces between TiN, anatase, and rutile provide built-in electric fields for efficient separation of photoinduced carriers and hot electron injection via ohmic contact and type-Ⅱ band arrangement. As a result, the TiN/(A-R-TiO2-Ov) photocatalyst shows an excellent photocatalytic hydrogen generation rate of 15.07 mmol/g/h, which is 20.6 times higher than that of titanium dioxide P25. Moreover, temperature-dependent photocatalytic tests reveal that the excellent photothermal conversion caused by plasmonic heating and crystal lattice vibrations in TiN/(A-R-TiO2-Ov) has about 25 % enhancement in photocatalysis (18.84 mmol/g/h). This work provides new inspiration for developing high-performance photocatalysts by optimizing charge transfer and photothermal conversion.

2.
ACS Appl Mater Interfaces ; 15(42): 49739-49748, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37842970

RESUMO

Manipulating interface defects can minimize interfacial nonradiative recombination, thus increasing the stability and performance of perovskite solar cells (PSCs). Here, copper acetylacetonate [Cu(acac)2] as a passivator is used to treat the interface between Spiro-OMeTAD and perovskite. Owing to the strong chelation, the uncoordinated Pb2+ could react with -C═O/-COH functional groups, firmly anchoring acetylacetonate at this interface or the grain boundaries (GBs) of perovskite films to construct multiple ligand bridges, accompanied by the p-type copper iodide formation with copper substituting lead. Simultaneously, Cu+-Cu2+ pairs transfer electrons from Pb0 to I0, suppressing deep level defects of Pb0 and I0 near the perovskite interface. These can be beneficial to hole-transferring. Moreover, the Schiff base complexes with hydrophobicity, from the reaction of acetylacetonate with perovskite, can lead to tightly packed adjacent perovskite surfaces and self-seal the GBs of the perovskite, inhibiting moisture diffusion for long-term stability. Consequently, the Cu(acac)2-based PSC has achieved more than 24% champion efficiency while retaining ca. 92% of the initial power conversion efficiency after 1680 h of storage.

3.
Chem Commun (Camb) ; 59(55): 8544-8547, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37340853

RESUMO

We fabricated high-quality CsPbBr3 perovskite nanonet films with the assistance of polystyrene spheres, and constructed self-powered photodetectors (PDs) with an ITO/SnO2/CsPbBr3/carbon structure. By passivating the nanonet with different concentrations of 1-butyl-3-methylimidazolium bromide (BMIMBr) ionic liquid, we found that as the concentration of BMIMBr increases, the dark current of the device first decreases and then gradually increases, while the photocurrent remains essentially unchanged. Finally, the PD with 1 mg mL-1 BMIMBr ionic liquid exhibited the best performance with a switch ratio of about 1.35 × 106, a linear dynamic range extending to 140 dB, and responsivity and detectivity values of 0.19 A W-1 and 4.31 × 1012 Jones, respectively. These results provide an important reference for fabricating perovskite PDs.


Assuntos
Líquidos Iônicos , Compostos de Cálcio , Carbono , Óxidos
4.
ACS Appl Mater Interfaces ; 13(37): 44440-44450, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499478

RESUMO

A phase junction fabricated by two crystalline phases of the same semiconductor is a promising photocatalyst with efficient charge transfer and separation. However, the weak light absorption and uncontrolled phase junction interface limit the generation and separation of photogenerated carriers. Herein, a two-dimensional (2D)/2D phase junction was prepared by growing orthorhombic WO3 ultrathin nanosheets on hexagonal WO3 nanosheets through a one-step hydrothermal method. The orthorhombic/hexagonal WO3 possesses large-area phase junction interfaces, rich reactive sites, and built-in electric field, which greatly accelerate the photogenerated charge separation and transfer. Thus, the orthorhombic/hexagonal WO3 displayed excellent photocatalytic hydrogen generation activity from water splitting under light irradiation (λ > 420 nm), which is 2.16 and 2.85 times those of orthorhombic and hexagonal WO3 phase components. Furthermore, Au nanoparticles (about 4.5 nm in diameter) were deposited on both orthorhombic and hexagonal WO3 nanosheets to form a plasmon-mediated phase junction. The hybrids exhibit prominent visible-light absorption and efficient charge transfer, leading to a further improved photocatalytic hydrogen generation activity. Further characterization studies demonstrate that superior photoactivity arises from the excellent visible-light-harvesting ability, appropriate band structure, and high-efficiency and multichannel transferring processes of photogenerated carriers.

5.
ACS Appl Mater Interfaces ; 12(34): 38554-38562, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32846467

RESUMO

Au nanoingots, on which an Au nanosphere is accurately placed in an open Au shell, are synthesized through a controllable hydrothermal method. The prepared Au nanoingots exhibit an adjustable cavity structure, strong plasmon coupling, tunable magnetic plasmon resonance, and prominent photocatalytic and SERS performances. Au nanoingots exhibit two resonance peaks in the extinction spectrum, one (around 550 nm) is ascribed to electric dipole resonance coming from the central Au, and the other one (650-800 nm) is ascribed to the magnetic dipole resonance originating from the open Au shell. Numerical simulations verify that the intense electric and magnetic fields locate in the bowl-shaped nanogap between the Au nanosphere and shell, and they can be further optimized by changing the size of the outer Au shell. Au nanoingots with the largest shell have the strongest electric field because of large-area plasmon coupling, while Au nanoingots with the largest shell opening size have the strongest magnetic field. As a result, the structure-adjustable Au nanoingots show a high tunability and enhancement of catalytic reduction of p-nitrophenol and SERS detection of Rhodamine B. Specially, Au nanoingots with the largest shell size exhibit the highest catalytic activity and Raman signals at 532 nm excitation. However, Au nanoingots with the largest shell opening size have the highest photocatalytic activity with light irradiation (λ > 420 nm) and exhibit the best SERS performance at 785 nm excitation.

6.
Nanoscale ; 12(7): 4383-4392, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32025686

RESUMO

Plasmon coupling induced intense light absorption and near-field enhancement have vast potential for high-efficiency photocatalytic applications. Herein, (Au/AgAu)@CdS core-shell hybrids with strong multi-interfacial plasmon coupling were prepared through a convenient strategy for efficient photocatalytic hydrogen generation. Bimetallic Au/AgAu cores with an adjustable number of nanogaps (from one to four) were primarily synthesized by well-controlled multi-cycle galvanic replacement and overgrowth processes. Extinction tests and numerical simulations synergistically revealed that the multigap Au/AgAu hybrids possess a gap-dependent light absorption region and a local electric field owing to the multigap-induced multi-interfacial plasmon coupling. With these characteristics, hetero-photocatalysts prepared by further coating of CdS shells on multigap Au/AgAu cores exhibited a prominent gap-dependent photocatalytic hydrogen production activity from water splitting under light irradiation (λ > 420 nm). It is found that the hydrogen generation rates of multigap (Au/AgAu)@CdS have an exponential improvement compared with that of pure CdS as the number of nanogaps increases. In particular, four-gap (Au/AgAu)@CdS core-shell catalysts displayed the highest hydrogen generation rate, that is 96.1 and 47.2 times those of pure CdS and gapless Au@CdS core-shell hybrids. These improvements can be ascribed to the strong plasmon absorption and near-field enhancement induced by the multi-interfacial plasmon coupling, which can greatly improve the light-harvesting efficiency, offer more plasmonic energy, and boost the generation and separation of electron-hole pairs in the multigap catalysts.

7.
Adv Mater ; 30(44): e1804402, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30277609

RESUMO

A cryogenic process is introduced to control the crystallization of perovskite layers, eliminating the need for the use of environmentally harmful antisolvents. This process enables decoupling of the nucleation and the crystallization phases by inhibiting chemical reactions in as-cast precursor films rapidly cooled down by immersion in liquid nitrogen. The cooling is followed by blow-drying with nitrogen gas, which induces uniform precipitation of precursors due to the supersaturation of precursors in the residual solvents at very low temperature, while at the same time enhancing the evaporation of the residual solvents and preventing the ordered precursors/perovskite from redissolving into the residual solvents. Using the proposed techniques, the crystallization process can be initiated after the formation of a uniform precursor seed layer. The process is generally applicable to improve the performance of solar cells using perovskite films with different compositions, as demonstrated on three different types of mixed halide perovskites. A champion power conversion efficiency (PCE) of 21.4% with open-circuit voltage (VOC ) = 1.14 V, short-circuit current density ( JSC ) = 23.5 mA cm-2 , and fill factor (FF) = 0.80 is achieved using the proposed cryogenic process.

8.
Adv Mater ; 30(14): e1706023, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29484722

RESUMO

The carrier concentration of the electron-selective layer (ESL) and hole-selective layer can significantly affect the performance of organic-inorganic lead halide perovskite solar cells (PSCs). Herein, a facile yet effective two-step method, i.e., room-temperature colloidal synthesis and low-temperature removal of additive (thiourea), to control the carrier concentration of SnO2 quantum dot (QD) ESLs to achieve high-performance PSCs is developed. By optimizing the electron density of SnO2 QD ESLs, a champion stabilized power output of 20.32% for the planar PSCs using triple cation perovskite absorber and 19.73% for those using CH3 NH3 PbI3 absorber is achieved. The superior uniformity of low-temperature processed SnO2 QD ESLs also enables the fabrication of ≈19% efficiency PSCs with an aperture area of 1.0 cm2 and 16.97% efficiency flexible device. The results demonstrate the promise of carrier-concentration-controlled SnO2 QD ESLs for fabricating stable, efficient, reproducible, large-scale, and flexible planar PSCs.

9.
Adv Mater ; 30(12): e1706126, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29411431

RESUMO

High-quality pinhole-free perovskite film with optimal crystalline morphology is critical for achieving high-efficiency and high-stability perovskite solar cells (PSCs). In this study, a p-type π-conjugated polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)-benzo[1,2-b:4,5-b'] dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl) benzo[1',2'-c:4',5'-c'] dithiophene-4,8-dione))] (PBDB-T) is introduced into chlorobenzene to form a facile and effective template-agent during the anti-solvent process of perovskite film formation. The π-conjugated polymer PBDB-T is found to trigger a heterogeneous nucleation over the perovskite precursor film and passivate the trap states of the mixed perovskite film through the formation of Lewis adducts between lead and oxygen atom in PBDB-T. The p-type semiconducting and hydrophobic PBDB-T polymer fills in the perovskite grain boundaries to improve charge transfer for better conductivity and prevent moisture invasion into the perovskite active layers. Consequently, the PSCs with PBDB-T modified anti-solvent processing leads to a high-efficiency close to 20%, and the devices show excellent stability, retaining about 90% of the initial power conversion efficiency after 150 d storage in dry air.

10.
Small ; 13(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28060468

RESUMO

Despite the rapid increase of efficiency, perovskite solar cells (PSCs) still face some challenges, one of which is the current-voltage hysteresis. Herein, it is reported that yttrium-doped tin dioxide (Y-SnO2 ) electron selective layer (ESL) synthesized by an in situ hydrothermal growth process at 95 °C can significantly reduce the hysteresis and improve the performance of PSCs. Comparison studies reveal two main effects of Y doping of SnO2 ESLs: (1) it promotes the formation of well-aligned and more homogeneous distribution of SnO2 nanosheet arrays (NSAs), which allows better perovskite infiltration, better contacts of perovskite with SnO2 nanosheets, and improves electron transfer from perovskite to ESL; (2) it enlarges the band gap and upshifts the band energy levels, resulting in better energy level alignment with perovskite and reduced charge recombination at NSA/perovskite interfaces. As a result, PSCs using Y-SnO2 NSA ESLs exhibit much less hysteresis and better performance compared with the cells using pristine SnO2 NSA ESLs. The champion cell using Y-SnO2 NSA ESL achieves a photovoltaic conversion efficiency of 17.29% (16.97%) when measured under reverse (forward) voltage scanning and a steady-state efficiency of 16.25%. The results suggest that low-temperature hydrothermal-synthesized Y-SnO2 NSA is a promising ESL for fabricating efficient and hysteresis-less PSC.

11.
Phys Chem Chem Phys ; 18(24): 16436-43, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27264190

RESUMO

Efficient planar antimony sulfide (Sb2S3) heterojunction solar cells have been made using chemical bath deposited (CBD) Sb2S3 as the absorber, low-temperature solution-processed tin oxide (SnO2) as the electron conductor and poly (3-hexylthiophene) (P3HT) as the hole conductor. A solar conversion efficiency of 2.8% was obtained at 1 sun illumination using a planar device consisting of F-doped SnO2 substrate/SnO2/CBD-Sb2S3/P3HT/Au, whereas the solar cells based on a titanium dioxide (TiO2) electron conductor exhibited a power conversion efficiency of 1.9%. Compared with conventional Sb2S3 sensitized solar cells, the high-temperature processed mesoscopic TiO2 scaffold is no longer needed. More importantly, a low-temperature solution-processed SnO2 layer was introduced for electron transportation to substitute the high-temperature sintered dense blocking TiO2 layer. Our planar solar cells not only have simple geometry with fewer steps to fabricate but also show enhanced performance. The higher efficiency of planar Sb2S3 solar cell devices based on a SnO2 electron conductor is attributed to their high transparency, uniform surface, efficient electron transport properties of SnO2, suitable energy band alignment, and reduced recombination at the interface of SnO2/Sb2S3.

12.
ACS Appl Mater Interfaces ; 8(13): 8460-6, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26996215

RESUMO

Indium oxide (In2O3) as a promising n-type semiconductor material has been widely employed in optoelectronic applications. In this work, we applied low-temperature solution-processed In2O3 nanocrystalline film as an electron selective layer (ESL) in perovskite solar cells (PSCs) for the first time. By taking advantages of good optical and electrical properties of In2O3 such as high mobility, wide band gap, and high transmittance, we obtained In2O3-based PSCs with a good efficiency exceeding 13% after optimizing the concentration of the precursor solution and the annealing temperature. Furthermore, to enhance the performance of the In2O3-based PSCs, a phenyl-C61-butyric acid methyl ester (PCBM) layer was introduced to modify the surface of the In2O3 film. The PCBM film could fill up the pinholes or cracks along In2O3 grain boundaries to passivate the defects and make the ESL extremely compact and uniform, which is conducive to suppressing the charge recombination. As a result, the efficiency of the In2O3-based PSC was improved to 14.83% accompanied with V(OC), J(SC), and FF being 1.08 V, 20.06 mA cm(-2), and 0.685, respectively.

13.
J Am Chem Soc ; 137(21): 6730-3, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25987132

RESUMO

Lead halide perovskite solar cells with the high efficiencies typically use high-temperature processed TiO2 as the electron transporting layers (ETLs). Here, we demonstrate that low-temperature solution-processed nanocrystalline SnO2 can be an excellent alternative ETL material for efficient perovskite solar cells. Our best-performing planar cell using such a SnO2 ETL has achieved an average efficiency of 16.02%, obtained from efficiencies measured from both reverse and forward voltage scans. The outstanding performance of SnO2 ETLs is attributed to the excellent properties of nanocrystalline SnO2 films, such as good antireflection, suitable band edge positions, and high electron mobility. The simple low-temperature process is compatible with the roll-to-roll manufacturing of low-cost perovskite solar cells on flexible substrates.

14.
Nat Commun ; 6: 6700, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25798925

RESUMO

Efficient lead halide perovskite solar cells use hole-blocking layers to help collection of photogenerated electrons and to achieve high open-circuit voltages. Here, we report the realization of efficient perovskite solar cells grown directly on fluorine-doped tin oxide-coated substrates without using any hole-blocking layers. With ultraviolet-ozone treatment of the substrates, a planar Au/hole-transporting material/CH3NH3PbI3-xClx/substrate cell processed by a solution method has achieved a power conversion efficiency of over 14% and an open-circuit voltage of 1.06 V measured under reverse voltage scan. The open-circuit voltage is as high as that of our best reference cell with a TiO2 hole-blocking layer. Besides ultraviolet-ozone treatment, we find that involving Cl in the synthesis is another key for realizing high open-circuit voltage perovskite solar cells without hole-blocking layers. Our results suggest that TiO2 may not be the ultimate interfacial material for achieving high-performance perovskite solar cells.

15.
ACS Appl Mater Interfaces ; 6(18): 15959-65, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25166513

RESUMO

A perovskite solar cell with a thin TiO2 compact film prepared by thermal oxidation of sputtered Ti film achieved a high efficiency of 15.07%. The thin TiO2 film prepared by thermal oxidation is very dense and inhibits the recombination process at the interface. The optimum thickness of the TiO2 compact film prepared by thermal oxidation is thinner than that prepared by spin-coating method. Also, the TiO2 compact film and the TiO2 porous film can be sintered at the same time. This one-step sintering process leads to a lower dark current density, a lower series resistance, and a higher recombination resistance than those of two-step sintering. Therefore, the perovskite solar cell with the TiO2 compact film prepared by thermal oxidation has a higher short-circuit current density and a higher fill factor.

16.
ACS Appl Mater Interfaces ; 6(8): 5525-30, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24660877

RESUMO

Nickel sulfide (NiS) nanowall networks have been prepared by a novel one-step hydrothermal method on a nickel (Ni) foam substrate. The Ni foam has a high conductivity and porous structure. To our knowledge, the Ni foam is used as a conductive substrate for the dye-sensitized solar cell (DSSC) for the first time. The Ni foam is used as not only the conductive substrate but also the Ni sources of the reaction. The Ni foam supported NiS prepared by this simple hydrothermal method shows high catalytic activity for reduction of triiodide ions. The DSSC with a transparent conductive oxide (TCO)-free NiS counter electrode (CE) was herein developed and showed a higher power conversion efficiency of 8.55% than that with a TCO supported NiS CE (7.47%) and a TCO supported platinum CE (7.99%).

17.
ACS Appl Mater Interfaces ; 6(4): 2963-73, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24506828

RESUMO

Efficient organic solar cells (OSCs) based on regioregular of poly (3-hexylthiophene):fullerene derivative [6,6]-phenyl-C61butyric acid methyl ester composites have been fabricated on indium tin oxide (ITO) coated glass substrates by using a sputtered sulfur-doped molybdenum oxide (S-MoO3) film as anode interface layer (AIL). With the help of X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy, we find that oxygen flow ratio control can modulate the amount of sulfur doping into MoO3, then further tune the Mo(+4)/Mo(+5)/Mo(+6) composition ratios, Fermi level, electron affinity, valence band ionization energy and band gap of MoO3. A partially occupied Mo 4d-bands of Mo(5+) and Mo(4+) states modulated by sulfur doping are the main factor which influences the valence electronic structure of S-MoO3.These orbitals overlap interrelation push the valence band close to S-MoO3's Fermi level, thus make it into a p-type semiconductor. S-MoO3 with smaller ionization energy and electron affinity is better suitable as an efficient AIL. On the basis of these AILs, a photovoltaic power conversion efficiency up to 3.69% has been achieved, which is 12% higher than that in pure MoO3 AIL case. The result thus shows that sulfur doping is a useful method to modify anode interface layer for improving the hole-transport properties of MoO3, which can improve the device performances.

18.
Nanoscale Res Lett ; 6: 546, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21970654

RESUMO

Flake-like Al-doped ZnO (AZO) nanostructures including dense AZO nanorods were obtained via a low-temperature (100°C) hydrothermal process. By doping and varying Al concentrations, the electrical conductivity (σ) and morphology of the AZO nanostructures can be readily controlled. The effect of σ and morphology of the AZO nanostructures on the performance of the inverted organic solar cells (IOSCs) was studied. It presents that the optimized power conversion efficiency of the AZO-based IOSCs is improved by approximately 58.7% compared with that of un-doped ZnO-based IOSCs. This is attributed to that the flake-like AZO nanostructures of high σ and tunable morphology not only provide a high-conduction pathway to facilitate electron transport but also lead to a large interfacial area for exciton dissociation and charge collection by electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...